Ion beam energy dependence of surface and structural properties of amorphous carbon films deposited by IBSD method on Ni–Cu alloy

2017 
The amorphous carbon thin films were deposited by the ion beam sputtering deposition technique on Ni–Cu alloy substrates. The effect of sputtering ion beam energy on wettabillity, surface, and structural properties of thin films was examined. The sputtering ion beam energy was varied over a wide range from 2 to 5 keV. Raman spectra showed that the values of ID/IG ratio and the ‘G’ peak position have a reduction trend by increasing the argon ion beam energy while the surface roughness increased due to the resputtering effect. The wettability and surface energy of a-C carbon films were studied by contact angle measurements in relation to structure and topography. The deposited films showed a relatively high water contact angle (CA) that decreases from 87° to 75°. The X-ray photoelectron spectroscopy showed that the value of sp3/sp2 bond content of a-C thin films deposited with the highest argon ion beam energy of 5 keV was about 0.8. Furthermore, the optical band gap followed similar trends of the structural properties.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    38
    References
    8
    Citations
    NaN
    KQI
    []