The Mg/MAX-phase composite for hydrogen storage

2021 
Abstract The Mg/MAX-phase composite materials are synthesized by reactive ball milling (RBM) in a hydrogen gas atmosphere, and phase composition and dehydrogenation performance of the composites are investigated. The Ti3AlC2 MAX-phase markedly reduces the dehydrogenation temperature of the MgH2 to 246 °C for the sample with 5 wt% of Ti3AlC2 MAX-phase and to 236 °C for the sample with 7 %wt. of Ti3AlC2 MAX-phase. The highest hydrogen capacity of 5.6 wt% was achieved for the Mg+7 wt% MAX-phase composite. The kinetic mechanism of the dehydrogenation of the composites is investigated by the Johnson-Mehl-Avrami-Kolmogorov (JMAK) technique.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    40
    References
    3
    Citations
    NaN
    KQI
    []