지오센서 네트워크의 다중 공간질의 최적화를 위한 공간질의처리비용 예측 알고리즘 연구

2013 
최근 IoT (Internet of Things) 기술의 발전과 더불어 무선 환경에서 특정 영역에 위치하는 센서노드의 위치-센서정보를 에너지 효율적으로 수집하는 센서 네트워크 기반 공간질의처리에 대한 관심이 크게 증가하고 있다. 그리하여 센서노드에서 공간 필터링을 직접 수행하여 센서노드들 간의 통신 횟수를 감소시켜 에너지 소모를 최소화하는 다양한 공간질의처리 알고리즘 및 분산 공간색인방법들이 제안되어 왔다. 그러나 단일 공간질의처리 최적화에 중점을 두었던 기존 공간색인방법 및 알고리즘들은 IoT 환경에서 다수 사용자에 의하여 요청되는 다중 공간질의를 최적화하여 수행하기에는 한계가 있었다. 이에 본 논문에서는 센서 네트워크에서 다중 공간질의를 에너지 효율적으로 처리할 수 있는 최적화 알고리즘을 제안하고 있다. 제안된 다중 공간질의 최적화 알고리즘은 인접 영역에 주어지는 공간질의들을 통합하여 수행하는 ‘질의통합’ 개념을 기본으로 하고 있다. 최적화 과정에서 질의들의 통합 또는 개별 수행에 대한 판단은 각 수행비용을 예측하여 결정하며, 본 논문에서는 질의처리 비용 예측 방법을 추가적으로 제안하고 있다. 끝으로, 성능평가에서는 GR-tree, SPIX, CPS의 공간색인방법에 대한 비교 실험을 통하여 제안된 알고리즘의 성능 분석결과를 제시하고 있다.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []