Measurement of water vapour transport through a porous non-hygroscopic material in a temperature gradient

2014 
This was an experiment to identify the driving potential for water vapour diffusion through porous materials in a temperature gradient. The specimen of mineral fibre insulation was placed between a space with controlled temperature and relative humidity and a space with a controlled, higher temperature, and a measured but not controlled relative humidity (RH). This assembly was allowed to reach equilibrium with no vapour movement between the spaces, as tested by a constant RH on each side and by zero flux of water vapour measured in the cold side chamber. The RH and temperature values were converted to partial vapour pressure and to vapour concentration in g/m3. The concentrations proved to be more equal on either side of the specimen than the partial vapour pressures. This supports an argument that it is concentration difference that drives diffusion of gases. Isothermal diffusion cannot be tested experimentally in this way, but it is reasonable to assume that concentration is the driving potential. The close equality of the concentrations makes it unnecessary to invoke temperature difference as a third possible potential for driving diffusion.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    10
    References
    0
    Citations
    NaN
    KQI
    []