Microstructures and Mechanical Properties of Sn-58 wt.%Bi Solder with Ag-Decorated Multiwalled Carbon Nanotubes Under 85°C/85% Relative Humidity Environmental Conditions

2019 
The mechanical properties of Sn-58 wt.% Bi solder with different amounts (0 wt.%, 0.05 wt.%, 0.1 wt.%, and 0.2 wt.%) of Ag-decorated multiwalled carbon nanotube (MWCNT) nanoparticles under 85°C/85% relative humidity environmental conditions for 0 h to 1000 h was investigated. Sn-58 wt.% Bi solder is a lead-free option for use in solder joints due to its low melting temperature and good creep resistance; however, it is brittle and has reliability issues. Ag-decorated MWCNT nanoparticles were used to improve these weaknesses of Sn-58 wt.% Bi solder. A ball shear test was performed using a bond tester to investigate the solder's mechanical properties. The microstructures of the solder joints and fracture mode were analyzed using a field-emission scanning electron microscope. The results demonstrated that the addition of Ag-decorated MWCNT nanoparticles to Sn-58 wt.% Bi increased the shear strength and fracture energy by approximately 15% and 14%, respectively, compared with Sn-58 wt.% Bi alone. After a high-temperature, high-humidity test for 1000 h, the shear strength and fracture energy of Sn-58 wt.% Bi with 0.1 wt.% Ag-decorated MWCNT nanoparticles were 13% and 21% greater than for Sn-58 wt.% Bi alone.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    23
    References
    1
    Citations
    NaN
    KQI
    []