Quadratic properties of least-squares solutions of linear matrix equations with statistical applications
2017
Assume that a quadratic matrix-valued function \(\psi (X) = Q - X^{\prime }PX\) is given and let \(\mathcal{S} = \left\{ X\in {\mathbb R}^{n \times m} \, | \, \mathrm{trace}[\,(AX - B)^{\prime }(AX - B)\,] = \min \right\} \) be the set of all least-squares solutions of the linear matrix equation \(AX = B\). In this paper, we first establish explicit formulas for calculating the maximum and minimum ranks and inertias of \(\psi (X)\) subject to \(X \in {\mathcal S}\), and then derive from the formulas the analytic solutions of the two optimization problems \(\psi (X) =\max \) and \(\psi (X)= \min \) subject to \(X \in \mathcal{S}\) in the Lowner partial ordering. As applications, we present a variety of results on equalities and inequalities of the ordinary least squares estimators of unknown parameter vectors in general linear models.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
35
References
5
Citations
NaN
KQI