Variability of cirrus cloud properties using a Polly XT Raman Lidar over high and tropical latitudes

2019 
Abstract. Measurements of cirrus clouds geometrical and optical properties, performed with a multi-wavelength Polly XT Raman Lidar, during the period 2008 to 2016 are analysed. The measurements were performed with the same instrument, during sequential periods, in three places at different latitudes, Gual Pahari (28.43° N, 77.15° E, 243 m a.s.l) in India, Elandsfontein (26.25° S, 29.43° E, 1745 m a.s.l) in South Africa and Kuopio (62.74° N, 27.54° E, 190 m a.s.l) in Finland. The lidar dataset has been processed by an automatic cirrus cloud detection algorithm. In the following, we present a statistical analysis of the lidar derived geometrical characteristics (cloud boundaries, geometrical thickness) and optical properties of cirrus clouds (cloud optical depth, lidar ratio, ice crystal depolarization ratio) measured in different latitudes that correspond to subtropical and subarctic regions as well as their seasonal variability. The effect of multiple-scattering from ice particles to the derived optical products is also considered and corrected in this study. Our results show that, over the subtropical stations, cirrus layers, which have a noticeable monthly variability, were observed between 7 to 13 km, with mid-cloud temperatures ranging from −60 °C to −21 °C and a mean thickness of 1295 ± 489 m and 1383 ± 735 m for Gual Pahari and Elandsfontein respectively. The corresponding overall mean cirrus optical depth at 355 nm is calculated to be 0.59 ± 0.39 and 0.40 ± 0.33, with lidar ratio values at 355 nm of 26 ± 12 sr and 25 ± 6 sr, respectively. A more extended dataset was acquired for the subarctic area of Kuopio Finland, between 2012 and 2016. The estimated average geometrical thickness of the cirrus clouds over Kuopio is 1200 ± 585 m and the temperature values vary from −71 °C to −21 °C, while the mean cirrus optical depth at 355 nm is 0.25 ± 0.2, with an estimated mean lidar ratio of 33 ± 7 sr, similar to the idar ratio values observed over middle latitude stations. The kind of information presented here can be rather useful in the cirrus parameterizations required as input to radiative transfer models, and can be a complementary tool to satellite products that cannot provide cloud vertical structure. In addition, a ground-based statistics of the cirrus properties could be useful in the validation and improvement of the corresponding derived products from satellite retrievals.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    50
    References
    7
    Citations
    NaN
    KQI
    []