Reinforcement Learning in Factored MDPs: Oracle-Efficient Algorithms and Tighter Regret Bounds for the Non-Episodic Setting.

2020 
We study reinforcement learning in non-episodic factored Markov decision processes (FMDPs). We propose two near-optimal and oracle-efficient algorithms for FMDPs. Assuming oracle access to an FMDP planner, they enjoy a Bayesian and a frequentist regret bound respectively, both of which reduce to the near-optimal bound $\widetilde{O}(DS\sqrt{AT})$ for standard non-factored MDPs. We propose a tighter connectivity measure, factored span, for FMDPs and prove a lower bound that depends on the factored span rather than the diameter $D$. In order to decrease the gap between lower and upper bounds, we propose an adaptation of the REGAL.C algorithm whose regret bound depends on the factored span. Our oracle-efficient algorithms outperform previously proposed near-optimal algorithms on computer network administration simulations.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    32
    References
    4
    Citations
    NaN
    KQI
    []