Identification and prioritization of differentially expressed genes for time-series gene expression data

2018 
Identification of differentially expressed genes (DEGs) in time course studies is very useful for understanding gene function, and can help determine key genes during specific stages of plant development. A few existing methods focus on the detection of DEGs within a single biological group, enabling to study temporal changes in gene expression. To utilize a rapidly increasing amount of single-group time-series expression data, we propose a two-step method that integrates the temporal characteristics of time-series data to obtain a B-spline curve fit. Firstly, a flat gene filter based on the Ljung–Box test is used to filter out flat genes. Then, a B-spline model is used to identify DEGs. For use in biological experiments, these DEGs should be screened, to determine their biological importance. To identify high-confidence promising DEGs for specific biological processes, we propose a novel gene prioritization approach based on the partner evaluation principle. This novel gene prioritization approach utilizes existing co-expression information to rank DEGs that are likely to be involved in a specific biological process/condition. The proposed method is validated on the Arabidopsis thaliana seed germination dataset and on the rice anther development expression dataset.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    30
    References
    1
    Citations
    NaN
    KQI
    []