Perilipin 5 is protective in the ischemic heart

2016 
Abstract Background Myocardial ischemia is associated with alterations in cardiac metabolism, resulting in decreased fatty acid oxidation and increased lipid accumulation. Here we investigate how myocardial lipid content and dynamics affect the function of the ischemic heart, and focus on the role of the lipid droplet protein perilipin 5 (Plin5) in the pathophysiology of myocardial ischemia. Methods and results We generated Plin5 −/− mice and found that Plin5 deficiency dramatically reduced the triglyceride content in the heart. Under normal conditions, Plin5 −/− mice maintained a close to normal heart function by decreasing fatty acid uptake and increasing glucose uptake, thus preserving the energy balance. However, during stress or myocardial ischemia, Plin5 deficiency resulted in myocardial reduced substrate availability, severely reduced heart function and increased mortality. Importantly, analysis of a human cohort with suspected coronary artery disease showed that a common noncoding polymorphism, rs884164, decreases the cardiac expression of PLIN5 and is associated with reduced heart function following myocardial ischemia, indicating a role for Plin5 in cardiac dysfunction. Conclusion Our findings indicate that Plin5 deficiency alters cardiac lipid metabolism and associates with reduced survival following myocardial ischemia, suggesting that Plin5 plays a beneficial role in the heart following ischemia.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    36
    References
    22
    Citations
    NaN
    KQI
    []