Modelling the Effect of Particle Size Distribution in Multiphase Flows with Computational Fluid Dynamics and Physical Erosion Experiments

2014 
It is known that particle size has an influence in determining the erosion rate, and hence equipment life, on a target material in single phase flows (i.e. flow of solid particles in liquid only or gas only flows). In reality single phase flow is rarely the case for field applications in the oil and gas industry. Field cases are typically multiphase in nature, with volumetric combinations of gas, liquid and sand. Erosion predictions of multiphase flows extrapolated from single phase flow results may be overly conservative. Current understanding of particle size distribution on material erosion in multiphase flows is limited. This work examines the effect of particle size distribution on material erosion of a cylindrical aluminium rod positioned in a 2" vertical pipe under slug and distributed bubble regimes using various water and air volume ratios. This is achieved through physical erosion experiments and computational fluid dynamics (CFD) simulations tailored to account for particle dynamics in multiphase flows.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    17
    References
    2
    Citations
    NaN
    KQI
    []