Time- and Phase-Resolved Laser-Induced XUV Free Induction Decay Spectroscopy of Electronic Wavepackets

2017 
We present a novel time- and phase-resolved, background-free scheme to study the extreme ultraviolet dipole emission of a bound electronic wavepacket, without the use of any extreme ultraviolet exciting pulse. Using multiphoton transitions, we populate a superposition of quantum states which coherently emit extreme ultraviolet radiation through free induction decay. This emission is probed and controlled, both in amplitude and phase, by a time-delayed infrared femtosecond pulse. We directly measure the laser-induced dephasing of the emission by using a simple heterodyne dectection scheme based on two-source interferometry. This technique provides rich information about the interplay between the laser field and the Coulombic potential on the excited electron dynamics.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    2
    Citations
    NaN
    KQI
    []