Real-time analysis of cell-surface adhesive interactions using thickness shear mode resonator
2006
Abstract The cell adhesion process and the molecular interactions that determine its kinetics were investigated using a thickness shear mode (TSM) sensor. The goal of this study was to correlate sensor readings with the progression of cell adhesion. In particular, the specific effects of receptor-mediated adhesion, the glycocalyx, and surface charge on initial cell–surface attachment and steady-state adhesion of endothelial cells were investigated. We found a strong correlation between resistance changes (Δ R ) and the development of cell adhesion strength by comparing the sensor readings with independently assessed cell adhesion. The result showed that integrin binding determines the kinetics of initial cell attachment while heparan sulfate proteoglycan (HSPG) modulates steady-state adhesion strength. Coating the sensor surface with the positively charged poly- d -lysine (PDL) enhanced the initial interaction with substratum. These data confirm our current understanding of the contribution of these three phenomena to the adhesion process. The real-time monitoring capability of this technique with high temporal resolution provides more detailed information on the kinetics of the different stages of the adhesion process. This technique has the potential to facilitate the evaluation of biomaterials and surface treatments used for implants and tissue-engineering scaffolds for their bioactive effects on the cell adhesion process.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
24
References
50
Citations
NaN
KQI