Immobilization and migration of arsenic during the conversion of microbially induced calcium carbonate to hydroxylapatite.

2021 
Coprecipitation with calcium carbonate (CaCO3) could decrease the bioavailability of arsenic (As). However, in a phosphate-rich environment, some CaCO3 will be converted to hydroxylapatite (HAP). Currently, the behavior of carbonate-bound As during conversion is unclear. Therefore, we prepared bio-induced CaCO3 in an As solution and converted it to HAP. The results showed that a high concentration of arsenate promoted vaterite precipitation and the conversion of CaCO3 to HAP. The dissolution data verified the low solubility of As in HAP, though its As-bearing CaCO3 precursor released up to 88.19% As during the conversion. Furthermore, HPLC-ICP-MS data showed partial oxidation of arsenite to arsenate, suggesting that CaCO3 and HAP's structure favored the incorporation of arsenate. Our results demonstrated that the stability of heavy metal-bearing CaCO3 should be considered, and the role of HAP in the immobilization of heavy metals such as As should not be overestimated.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    69
    References
    1
    Citations
    NaN
    KQI
    []