Enhanced DC-Operated Electroluminescence of Forwardly Aligned p/MQW/n InGaN Nanorod LEDs via DC Offset-AC Dielectrophoresis

2017 
We introduce an orientation-controlled alignment process of p-GaN/InGaN multiquantum-well/n-GaN (p/MQW/n InGaN) nanorod light-emitting diodes (LEDs) by applying the direct current (DC) offset-alternating current (AC) or pulsed DC electric fields across interdigitated metal electrodes. The as-forwardly aligned p/MQW/n InGaN nanorod LEDs by a pulsed DC dielectrophoresis (DEP) assembly process improve the electroluminescence (EL) intensities by 1.8 times compared to the conventional AC DEP assembly process under DC electric field operation and exhibit an enhanced applied current and EL brightness in the current–voltage and EL intensity–voltage curves, which can be directly used as the fundamental data to construct DC-operated nanorod LED devices, such as LED areal surface lightings, scalable lightings (micrometers to inches) and formable surface lightings. The enhancement in the applied current, the improved EL intensity, and the increased number of forwardly aligned p/MQW/n InGaN nanorods in panchromatic ca...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    44
    References
    4
    Citations
    NaN
    KQI
    []