Integrated Equivalent Circuit and Thermal Model for Simulation of Temperature-Dependent LiFePO 4 Battery in Actual Embedded Application

2017 
A computational efficient battery pack model with thermal consideration is essential for simulation prototyping before real-time embedded implementation. The proposed model provides a coupled equivalent circuit and convective thermal model to determine the state-of-charge (SOC) and temperature of the LiFePO4 battery working in a real environment. A cell balancing strategy applied to the proposed temperature-dependent battery model balanced the SOC of each cell to increase the lifespan of the battery. The simulation outputs are validated by a set of independent experimental data at a different temperature to ensure the model validity and reliability. The results show a root mean square (RMS) error of 1.5609 × 10−5 for the terminal voltage and the comparison between the simulation and experiment at various temperatures (from 5 °C to 45 °C) shows a maximum RMS error of 7.2078 × 10−5.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    19
    References
    34
    Citations
    NaN
    KQI
    []