Unraveling Fe(II)-oxidizing mechanisms in a facultative Fe(II) oxidizer Sideroxydans lithotrophicus ES-1 via culturing, transcriptomics, and RT-qPCR

2021 
Sideroxydans lithotrophicus ES-1 grows autotrophically either by Fe(II) oxidation or thiosulfate oxidation, in contrast to most other neutrophilic Fe(II)-oxidizing bacteria (FeOB) isolates. This provides a unique opportunity to explore the physiology of a facultative FeOB and constrain the genes specific to Fe(II) oxidation. We compared the growth of S. lithotrophicus ES-1 on Fe(II), thiosulfate, and both substrates together. While initial growth rates were similar, thiosulfate-grown cultures had higher yield with or without Fe(II) present, which may give ES-1 an advantage over obligate FeOB. To investigate the Fe(II) and S oxidation pathways, we conducted transcriptomics experiments, validated with RT-qPCR. We explored the long-term gene expression response at different growth phases (over days-week) and expression changes during a short-term switch from thiosulfate to Fe(II) (90 min). The dsr and sox sulfur oxidation genes were upregulated in thiosulfate cultures. The Fe(II) oxidase gene cyc2 was among the top expressed genes during both Fe(II) and thiosulfate oxidation, and addition of Fe(II) to thiosulfate-grown cells caused an increase in cyc2 expression. These results support the role of Cyc2 as the Fe(II) oxidase and suggest that ES-1 maintains readiness to oxidize Fe(II) even in the absence of Fe(II). We used gene expression profiles to further constrain the ES-1 Fe(II) oxidation pathway. Notably, among the most highly upregulated genes during Fe(II) oxidation were genes for alternative complex III, reverse electron transport and carbon fixation. This implies a direct connection between Fe(II) oxidation and carbon fixation, suggesting that CO2 is an important electron sink for Fe(II) oxidation. ImportanceNeutrophilic FeOB are increasingly observed in various environments, but knowledge of their ecophysiology and Fe(II) oxidation mechanisms is still relatively limited. Sideroxydans are widely observed in aquifers, wetlands, and sediments, and genome analysis suggests metabolic flexibility contributes to their success. The type strain ES-1 is unusual amongst neutrophilic FeOB isolates as it can grow on either Fe(II) or a non-Fe(II) substrate, thiosulfate. Almost all our knowledge of neutrophilic Fe(II) oxidation pathways comes from genome analyses, with some work on metatranscriptomes. This study used culture-based experiments to test the genes specific to Fe(II) oxidation in a facultative FeOB and refine our model of the Fe(II) oxidation pathway. We gained insight into how facultative FeOB like ES-1 connect Fe, S, and C biogeochemical cycling in the environment, and suggest a multi-gene indicator would improve understanding of Fe(II) oxidation activity in environments with facultative FeOB.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    67
    References
    0
    Citations
    NaN
    KQI
    []