Neuronally expressed a-series gangliosides are sufficient to prevent the lethal age-dependent phenotype in GM3-only expressing mice.

2021 
Gangliosides are expressed on plasma membranes throughout the body and enriched in the nervous system. A critical role for complex a- and b-series gangliosides in central and peripheral nervous system ageing has been established through transgenic manipulation of enzymes in ganglioside biosynthesis. Disrupting GalNAc-transferase (GalNAc-T), thus eliminating all a- and b-series complex gangliosides (with consequent over-expression of GM3 and GD3) leads to an age-dependent neurodegeneration. Mice that express only GM3 ganglioside (double knockout produced by crossing GalNAc-T-/- and GD3 synthase-/- mice, Dbl KO) display markedly accelerated neurodegeneration with reduced survival. Degenerating axons and disrupted to the node of Ranvier architecture are key features of complex ganglioside-deficient mice. Previously, we have shown that reintroduction of both a- and b-series gangliosides into neurons on a global GalNAcT -/- background is sufficient to rescue this age-dependent neurodegenerative phenotype. To determine the relative roles of a- and b-series gangliosides in this rescue paradigm, we herein reintroduced GalNAc-T into neurons of Dbl KO mice, thereby reconstituting a-series but not b-series complex gangliosides. We assessed survival, axon degeneration, axo-glial integrity, inflammatory markers, and lipid-raft formation in these Rescue mice compared to wild type and Dbl KO mice. We found that this neuronal reconstitution of a-series complex gangliosides abrogated the adult lethal phenotype in Dbl KO mice, and partially attenuated the neurodegenerative features. This suggests that whilst neuronal expression of a-series gangliosides is critical for survival during ageing, it is not entirely sufficient to restore complete nervous system integrity in the absence of either b-series or glial a-series gangliosides.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    57
    References
    1
    Citations
    NaN
    KQI
    []