Identification of DNA 3‘-Phosphatase Active Site Residues and Their Differential Role in DNA Binding, Mg2+ Coordination, and Catalysis†

2004 
DNA 3‘-phosphatase (Tpp1) from Saccharomyces cerevisiae, a homologue of human polynucleotide kinase/3‘-phosphatase, has been shown to participate in DNA damage repair by removing 3‘-phosphate blocking lesions. Tpp1 shows similarity to the l-2-haloacid dehalogenase superfamily of enzymes. By comparison to phosphoserine phosphatase, a well-studied member of this family, we designed conservative and nonconservative substitutions of likely active site residues of Tpp1 and tested them in a variety of assays. From the loss or impairment of activity, we identified D35, D37, T39, S88, K170, D206, and D218 as being involved in Tpp1 catalysis. D35 and K170 were the most critical since maximum inactivation was seen with even conservative mutations. Tpp1 bound DNA through its active site in a Mg2+-dependent manner and exhibited a preference for dsDNA. Although Tpp1 bound more strongly to DNA with a free 3‘ terminus, it also bound well to covalently closed DNA, suggesting a possible lesion scanning mechanism. DNA bind...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    17
    References
    23
    Citations
    NaN
    KQI
    []