An efficient micromixer actuated by induced-charge electroosmosis using asymmetrical floating electrodes

2018 
Efficient microfluid mixing is an important process for various microfluidic-based biological and chemical reactions. Herein we propose an efficient micromixer actuated by induced-charge electroosmosis (ICEO). The microchannel of this device is easy to fabricate for its simple straight channel structure. Importantly, unlike previous design featuring complicated three-dimensional conducting posts, we utilize the simpler asymmetrical planar floating-electrodes to induce asymmetrical microvortices. For evaluating the mixing performance of this micromixer, we conducted a series of simulations and experiments. The mixing performance was quantified using the mixing index, specifically, the mixing efficiency can reach 94.7% at a flow rate of 1500 µm/s under a sinusoidal wave with a peak voltage of 14 V and a frequency of 400 Hz. Finally, we compared this micromixer with different micromixing devices using a comparative mixing index, demonstrating that this micromixer remains competitive among these existing designs. Therefore, the method proposed herein can offer a simple solution for efficient fluids mixing in microfluidic systems.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    37
    References
    20
    Citations
    NaN
    KQI
    []