On the extremal points of the $\Lambda$-polytopes and classical simulation of quantum computation with magic states.

2021 
We investigate the $\Lambda$-polytopes, a convex-linear structure recently defined and applied to the classical simulation of quantum computation with magic states by sampling. There is one such polytope, $\Lambda_n$, for every number $n$ of qubits. We establish two properties of the family $\{\Lambda_n, n\in \mathbb{N}\}$, namely (i) Any extremal point (vertex) $A_\alpha \in \Lambda_m$ can be used to construct vertices in $\Lambda_n$, for all $n>m$. (ii) For vertices obtained through this mapping, the classical simulation of quantum computation with magic states can be efficiently reduced to the classical simulation based on the preimage $A_\alpha$. In addition, we describe a new class of vertices in $\Lambda_2$ which is outside the known classification. While the hardness of classical simulation remains an open problem for most extremal points of $\Lambda_n$, the above results extend efficient classical simulation of quantum computations beyond the presently known range.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    23
    References
    0
    Citations
    NaN
    KQI
    []