Future streamflow regime changes in the United States: assessment using functional classification

2020 
Abstract. Streamflow regimes are changing and expected to further change under the influence of climate change with potential impacts on flow variability and the seasonality of extremes. However, not all types of regimes are going to change in the same way. Climate change impact assessments can therefore benefit from identifying classes of catchments with similar streamflow regimes. Traditional catchment classification approaches have focused on specific meteorological and/or streamflow indices usually neglecting the temporal information stored in the data. The aim of this study is two-fold: (1) develop a catchment classification scheme that allows for the incorporation of such temporal information and (2) use the scheme to evaluate changes in future flow regimes. We use the developed classification scheme, which relies on a functional data representation, to cluster a large set of catchments in the conterminous United States (CONUS) according to their mean annual hydrographs. We identify five regime classes that summarize the behavior of catchments in the CONUS: (1) Intermittent regime, (2) weak winter regime, (3) strong winter regime, (4) New Year's regime, and (5) melt regime. Our results show that these spatially contiguous classes are not only similar in terms of their regimes, but also their flood and drought behavior, as well as their physiographical and meteorological characteristics. We therefore deem the functional regime classes valuable for a number of applications going beyond change assessments including model validation studies or the prediction of streamflow characteristics in ungauged basins. To assess future regime changes, we use simulated discharge time series obtained from the Variable Infiltration Capacity hydrologic model driven with meteorological time series generated by five general circulation models. A comparison of the future regime classes derived from these simulations with current classes shows that robust regime changes are expected only for currently melt-influenced regions in the Rocky Mountains. These changes in mountainous, upstream regions may require the adaptation of water management strategies to ensure sufficient water supply in dependent downstream regions.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    83
    References
    19
    Citations
    NaN
    KQI
    []