MiR‐103 inhibiting cardiac hypertrophy through inactivation of myocardial cell autophagy via targeting TRPV3 channel in rat hearts

2019 
Cardiac hypertrophy is a common pathological change frequently accompanied by chronic hypertension and myocardial infarction. Nevertheless, the pathophysiological mechanisms of cardiac hypertrophy have never been elucidated. Recent studies indicated that miR‐103 expression was significantly decreased in heart failure patients. However, less is known about the role of miR‐103 in cardiac hypertrophy. The present study was designed to investigate the relationship between miR‐103 and the mechanism of pressure overload‐induced cardiac hypertrophy. TRPV3 protein, cardiac hypertrophy marker proteins (BNP and β‐MHC) and autophagy associated proteins (Beclin‐1 and LC3‐II) were up‐regulated, as well as, miR‐103 expression and autophagy associated proteins (p62) were down‐regulated in cardiac hypertrophy models in vivo and in vitro respectively. Further results indicated that silencing TRPV3 or forcing overexpression of miR‐103 could dramatically inhibit cell surface area, relative fluorescence intensity of Ca2+ signal and the expressions of BNP, β‐MHC, Beclin‐1 and LC3‐II, but promote p62 expression. Moreover, TRPV3 protein was decreased in neonatal rat ventricular myocyte transfected with miR‐103, but increased by AMO‐103. Co‐transfection of the miR‐103 with the luciferase reporter vector into HEK293 cells caused a sharp decrease in luciferase activity compared with transfection of the luciferase vector alone. The miR‐103‐induced depression of luciferase activity was rescued by an AMO‐103. These findings suggested that TRPV3 was a direct target of miR‐103. In conclusion, miR‐103 could attenuate cardiomyocyte hypertrophy partly by reducing cardiac autophagy activity through the targeted inhibition of TRPV3 signalling in the pressure‐overloaded rat hearts.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    40
    References
    14
    Citations
    NaN
    KQI
    []