Photovoltaic Integrated Hybrid Microgrid Structured Electric Vehicle Charging Station and Its Energy Management Approach

2019 
A hybrid microgrid-powered charging station reduces transmission losses with better power flow control in the modern power system. However, the uncoordinated charging of battery electric vehicles (BEVs) with the hybrid microgrid results in ineffective utilization of the renewable energy sources connected to the charging station. Furthermore, planned development of upcoming charging stations includes a multiport charging facility, which will cause overloading of the utility grid. The paper analyzes the following technical issues: (1) the energy management strategy and converter control of multiport BEV charging from a photovoltaic (PV) source and its effective utilization; (2) maintenance of the DC bus voltage irrespective of the utility grid overloading, which is caused by either local load or the meagerness of PV power through its energy storage unit (ESU). In addition, the charge controller provides closed loop charging through constant current and voltage, and this reduces the charging time. The aim of an energy management strategy is to minimize the usage of utility grid power and store PV power when the vehicle is not connected for charging. The proposed energy management strategy (EMS) was modeled and simulated using MATLAB/Simulink, and its different modes of operation were verified. A laboratory-scale experimental prototype was also developed, and the performance of the proposed charging station was investigated.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    44
    References
    41
    Citations
    NaN
    KQI
    []