All-optical and microwave-free detection of Meissner screening using nitrogen-vacancy centers in diamond

2021 
Microscopic studies on thin film superconductors play an important role for probing non-equilibrium phase transitions and revealing dynamics at the nanoscale. However, magnetic sensors with nanometer scale spatial and picosecond temporal resolution are essential for exploring these. Here, we present an all-optical, microwave-free method that utilizes the negatively charged nitrogen-vacancy (NV) center in diamond as a non-invasive quantum sensor and enables the spatial detection of the Meissner state in a superconducting thin film. We place an NV implanted diamond membrane on a 20 nm thick superconducting La 2 − xSr xCuO 4 (LSCO) thin film with T c of 34 K. The strong B-field dependence of the NV photoluminescence allows us to investigate the Meissner screening in LSCO under an externally applied magnetic field of 4.2 mT in a non-resonant manner. The magnetic field profile along the LSCO thin film can be reproduced using Brandt’s analytical model, revealing a critical current density j c of 1.4 × 10 8 A / c m 2. Our work can be potentially extended further with a combination of optical pump probe spectroscopy for the local detection of time-resolved dynamical phenomena in nanomagnetic materials.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    43
    References
    1
    Citations
    NaN
    KQI
    []