Comparison of three species of Elizabethkingia genus by whole-genome sequence analysis.

2021 
Elizabethkingia are found to cause severe neonatal meningitis, nosocomial pneumonia, endocarditis, and bacteremia. However, there are few studies on Elizabethkingia genus by comparative genomic analysis. In this study, three species of Elizabethkingia were found: E. meningoseptica, E. anophelis and E. miricola. Resistance genes and associated proteins of seven classes of antibiotics including beta-lactams, aminoglycosides, macrolides, tetracyclines, quinolones, sulfonamides, and glycopeptides, as well as multidrug resistance efflux pumps were identified from 20 clinical isolates of Elizabethkingia by whole-genome sequence. Genotype and phenotype displayed a good consistency in beta-lactams, aminoglycosides and glycopeptides, while contradictions exhibited in tetracyclines, quinolones and sulfonamides. Virulence factors and associated genes such as hsp60 (htpB), exopolysaccharide (EPS) (galE/pgi), Mg2+ transport (mgtB/mgtE), and catalase (katA/katG) existed in all clinical and reference strains. The functional analysis of the clusters of orthologous groups indicated that 'metabolism' occupied the largest part in core genome, 'information storage and processing' was the largest group in both accessory genome and unique genome. Abundant mobile elements were identified in E. meningoseptica and E. anophelis. The most significant finding in our study was that a single clone of E. anophelis had been circulating within diversities of departments in a clinical setting for nearly 18 months.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    39
    References
    1
    Citations
    NaN
    KQI
    []