Constructive exact control of semilinear 1D wave equations by a least-squares approach

2020 
It has been proved by Zuazua in the nineties that the internally controlled semilinear 1D wave equation $\partial_{tt}y-\partial_{xx}y + g(y)=f 1_{\omega}$, with Dirichlet boundary conditions, is exactly controllable in $H^1_0(0,1)\cap L^2(0,1)$ with controls $f\in L^2((0,1)\times(0,T))$, for any $T>0$ and any nonempty open subset $\omega$ of $(0,1)$, assuming that $g\in \mathcal{C}^1(\R)$ does not grow faster than $\beta\vert x\vert \ln^{2}\vert x\vert$ at infinity for some $\beta>0$ small enough. The proof, based on the Leray-Schauder fixed point theorem, is however not constructive. In this article, we design a constructive proof and algorithm for the exact controllability of semilinear 1D wave equations. Assuming that $g^\prime$ does not grow faster than $\beta \ln^{2}\vert x\vert$ at infinity for some $\beta>0$ small enough and that $g^\prime$ is uniformly Holder continuous on $\R$ with exponent $s\in[0,1]$, we design a least-squares algorithm yielding an explicit sequence converging to a controlled solution for the semilinear equation, at least with order $1+s$ after a finite number of iterations.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    17
    References
    3
    Citations
    NaN
    KQI
    []