Transition between advection and inertial wave propagation in rotating turbulence

2020 
In turbulent flows subject to strong background rotation, the advective mechanisms of turbulence are superseded by the propagation of inertial waves, as the effects of rotation become dominant. While this mechanism has been identified experimentally (Dickinson & Long, J. Fluid Mech., vol. 126, 1983, pp. 315–333; Davidson, Staplehurst & Dalziel, J. Fluid Mech., vol. 557, 2006, pp. 135–144; Staplehurst, Davidson & Dalziel, J. Fluid Mech., vol. 598, 2008, pp. 81–105; Kolvin et al.Phys. Rev. Lett., vol. 102, 2009, 014503), the conditions of the transition between the two mechanisms are less clear. We tackle this question experimentally by tracking the turbulent front away from a solid wall where jets enter an otherwise quiescent fluid. Without background rotation, this apparatus generates a turbulent front whose displacement recovers the law classically obtained with an oscillating grid (Dickinson & Long, Phys. Fluids, vol. 21 (10), 1978, pp. 1698–1701) and we further establish the scale independence of the associated transport mechanism. When the apparatus is rotating at a constant velocity perpendicular to the wall where fluid is injected, not only does the turbulent front become mainly transported by inertial waves, but advection itself is suppressed because of the local deficit of momentum incurred by the propagation of these waves. Scale-by-scale analysis of the displacement of the turbulent front reveals that the transition between advection and propagation is local both in space and spectrally, and takes place when the Rossby number based on the considered scale is of order unity, or equivalently, when the scale-dependent group velocity of inertial waves matched the local advection velocity.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    28
    References
    2
    Citations
    NaN
    KQI
    []