Selection of hybrid systems with hydrogen storage based on multiple criteria: application to autonomous systems and connected to the electrical grid

2014 
SUMMARY This study presents a selection of optimal energy alternatives for electrical self-sufficiency in a rural university (Universidad del Istmo, UNISTMO), located in the state of Oaxaca, Mexico and for the electricity supply for a rural community (Gran Piedra) in Santiago, Cuba. The analysis follows a multicriteria approach. It uses a method called compromise programming and takes into account the technical, economical, environmental and social criteria. The hybrid optimization model for electric renewables (HOMER) software was used to generate alternative energy sets through enumerative search, with which decisional matrices were built for each case study. The influence of weighting for each criterion was assessed. In the case of self-sufficiency in UNISTMO, when the decision-making center has a preference for the minimization of equivalent emissions in the life cycle (ESLC), a wind system is suitable. On the other hand, when there is a preference for the minimization of levelized cost of energy, a photovoltaic (PV) system is suitable; both systems connected to the national electrical grid. Obviously, a preference for the minimization of capital cost led to keeping the power supply from the grid. In the case of Gran Piedra, a diesel generator-based system is suitable when the criterion ‘capital cost’ absorbs 70% or more of the preferences of the decision-making centers. When the preference is less than 70% regardless of the weighting given to other criteria, the best alternatives are those involving renewable technologies, reaching renewable fractions of 75% and 94% in two potential configurations of energetic systems. Copyright © 2013 John Wiley & Sons, Ltd.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    33
    References
    7
    Citations
    NaN
    KQI
    []