PNO++: Perturbed Pair Natural Orbitals for Coupled Cluster Linear Response Theory.

2021 
Reduced-scaling methods are needed to make accurate and systematically improvable coupled cluster linear response methods for the calculation of molecular properties tractable for large molecules. In this paper, we examine the perturbed pair natural orbital-based PNO++ approach that creates an orbital space optimized for response properties derived from a lower-cost field-perturbed density matrix. We analyze truncation errors in correlation energies, dynamic polarizabilities, and specific rotations from a coupled cluster singles and doubles (CCSD) reference. We find that incorporating a fixed number of orbitals from the pair natural orbital (PNO) space into the PNO++ method-a new method presented here, the "combined PNO++" approach-recovers accuracy in the CCSD correlation energy while preserving the well-behaved convergence behavior of the PNO++ method for linear response properties.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    77
    References
    2
    Citations
    NaN
    KQI
    []