language-icon Old Web
English
Sign In

Dynamics of Relativistic Flows

2003 
Dynamics of relativistic outflows along the rotation axis of a Kerr black hole is investigated using a simple model that takes into account the relativistic tidal force of the central source as well as the Lorentz force due to the large-scale electromagnetic field which is assumed to be present in the ambient medium. The evolution of the speed of the flow relative to the ambient medium is studied. In the force-free case, the resulting equation of motion predicts rapid deceleration of the initial flow and an asymptotic relative speed with a Lorentz factor of 2^1/2. In the presence of the Lorentz force, the long-term relative speed of the clump tends to the ambient electrical drift speed.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    15
    References
    0
    Citations
    NaN
    KQI
    []