The First Russian Orbit-Borne Scatterometer: Numerical Simulation

2016 
We have chosen a “SeaWinds” scatterometer with an orbital altitude of about 800 km as a prototype of the first Russian orbital scatterometer. An involuntary decrease in the orbit altitude to 650 km made us choose between conservation of the initial swath width 1800 km or the incidence angles with the swath-width decrease to 1500 km. A wider swath width has the advantage of a better coverage of the world-ocean surface. However, it leads to an increase in the local incidence angles and, hence, a decrease in the reflected-signal power. As a result, the signalto-noise ratio decreases and an error in the wind velocity and direction reconstruction because of the equipment noise increases. The error of the wind-velocity vector reconstruction for the same drive and antenna is the choice criterion. During the study, the mathematical model of the scatterometer is developed, the numerical simulation for both swath widths is performed, the data are processed, and the reconstruction accuracies of the wind velocity and direction are compared. It is shown that the reconstruction accuracy can significantly be improved if the measurement for two polarizations is used. The results obtained also show that the wind velocity is sufficiently well reconstructed for both swaths, while the wind-direction reconstruction accuracy in the case of a wider swath is worse than that required by the technical specifications for the scatterometer. Therefore, the swath width of the new scatterometer should be 1500 km.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    11
    References
    2
    Citations
    NaN
    KQI
    []