The MinD Membrane Targeting Sequence Is a Transplantable Lipid-binding Helix

2003 
MinD is a ubiquitous ATPase that plays a crucial role in selection of the division site in eubacteria, chloroplasts, and probably also Archaea. It was recently demonstrated that membrane localization of MinD is mediated by an 8-12-residue C-terminal motif termed the membrane targeting sequence or MTS. In this study we show that the MinD MTS is a transplantable lipid-binding motif that can effectively target heterologous proteins to the cell membrane. We demonstrate that eubacterial MTSs interact directly with lipid bilayers as an amphipathic helix, with a distinct preference for anionic phospholipids. Moreover, we provide evidence that the phospholipid preference of each MTS, as well as its affinity for biological membranes, has been evolutionarily "tuned" to its specific role in different bacteria. We propose a model to describe how the MTS is coupled to ATP binding to regulate the reversible membrane association of Escherichia coli MinD during its pole-to-pole oscillation cycle.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    52
    References
    143
    Citations
    NaN
    KQI
    []