Improved electron selectivity in silicon solar cells by the cathode modification with a dipolar conjugated polyelectrolyte interlayer

2019 
This work studies a novel electron-selective contact for n-type silicon solar cells based on the modification of the cathode with a polymeric interlayer. Specifically, a thin layer of the conjugated polyelectrolyte PFN is intercalated before the Al contact. During solution-processing, the amine groups in the PFN polymer form intense dipoles by the aggregation of acetate radicals. These dipoles are partially oriented in spin-coated layers because of the different interaction with the substrate and the solvent. As a result, an internal electrostatic potential appears that causes an apparent reduction of the cathode work-function. In this way, electron-selectivity at the rear contact is enhanced by inducing a favourable band-bending near the surface. A significant improvement is obtained in conventional electron-selective contacts with n-doped a-Si:H layers. Furthermore, good-performing solar cells can be also obtained even without intentionally doped layers. Compared to other solutions like the evaporation ...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    31
    References
    2
    Citations
    NaN
    KQI
    []