Non-Markovian Decay and Decoherence in Open Quantum Systems

2005 
Interaction between a quantum system and its surroundings — be it another similar quantum system, a thermal reservoir, or a measurement device — breaks down the standard unitary evolution of the system alone and introduces open quantum system behaviour. Coupling to a fast-relaxing thermal reservoir is known to lead to an exponential decay of the quantum state, a process described by a Lindblad-type master equation. In modern quantum physics, however, near isolation of individual quantum objects, such as qubits, atoms, or ions, sometimes allow them only to interact with a slowly-relaxing near-environment, and the consequent decay of the atomic quantum state may become nonexponential and possibly even nonmonotonic. Here we consider different descriptions of non-Markovian evolutions and also hazards associated with them, as well as some physical situations in which the environment of a quantum system induces non-Markovian phenomena.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    1
    Citations
    NaN
    KQI
    []