Whittaker vectors for $\mathcal{W}$-algebras from topological recursion

2021 
We identify Whittaker vectors for $\mathcal{W}_k(\mathfrak{g})$-modules with partition functions of higher Airy structures. This implies that Gaiotto vectors, describing the fundamental class in the equivariant cohomology of a suitable compactification of the moduli space of $G$-bundles over $\mathbb{P}^2$ for $G$ a complex simple Lie group, can be computed by a non-commutative version of the Chekhov-Eynard-Orantin topological recursion. We formulate the connection to higher Airy structures for Gaiotto vectors of type A, B, C, and D, and explicitly construct the topological recursion for type A (at arbitrary level) and type B (at self-dual level). On the physics side, it means that the Nekrasov partition function for pure $\mathcal{N} = 2$ four-dimensional supersymmetric gauge theories can be accessed by topological recursion methods.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    73
    References
    1
    Citations
    NaN
    KQI
    []