The synapse-specific phosphoprotein F1-20 is identical to the clathrin assembly protein AP-3.

1993 
Abstract F1-20 and AP-3 are independently described, synapse-associated, developmentally regulated phosphoproteins with similar apparent molecular masses on SDS-polyacrylamide gel electrophoresis (PAGE). F1-20 was cloned and characterized because of its synapse specificity. AP-3 was purified and studied biochemically because of its function as a clathrin assembly protein. Here we present evidence that establishes the identity of F1-20 and AP-3. Monoclonal antibodies against F1-20 and AP-3 both specifically recognize a single protein from mouse brain with an apparent molecular mass of 190 kDa on SDS-PAGE. These monoclonal antibodies also specifically recognize the cloned F1-20 protein expressed in Escherichia coli. The anti-F1-20 monoclonal antibody (mAb) stains a bovine protein with an apparent molecular mass on SDS-PAGE of 190 kDa that copurifies with brain clathrin-coated vesicles (CCVs) and that can be extracted from the brain CCVs under conditions that extract AP-3. The anti-F1-20 and anti-AP-3 mAbs specifically recognize the same spot on a two-dimensional gel run on a bovine brain clathrin-coated vesicle extract. AP-3 purified from bovine brain CCVs is recognized by both the anti-F1-20 and anti-AP-3 mAbs. Purified preparations of bovine AP-3 and bacterially expressed mouse F1-20 give identical patterns of protease digestion with bromelain and subtilisin. Sequence analyses reveal that F1-20 has an essentially neutral 30-kDa NH2-terminal domain with an amino acid composition typical of a globular structure and an acidic COOH-terminal domain rich in proline, serine, threonine, and alanine. This is consistent with proteolysis experiments that suggested that AP-3 could be divided into a 30-kDa globular uncharged clathrin-binding domain and an acidic, anomalously migrating domain.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    48
    Citations
    NaN
    KQI
    []