β-Carotene and its physiological metabolites: Effects on oxidative status regulation and genotoxicity in in vitro models.

2020 
Abstract Carotenoids are ubiquitously distributed in nature, β-carotene being the most frequently found carotenoid in the human diet. In the human body, β-carotene is absorbed, distributed and metabolized by enzymatic and/or non-enzymatic oxidant cleavage into several metabolites. Despite the broadly accepted biological value of β-carotene, it has also been considered a double-edged sword, mainly due to its potential antioxidant versus pro-oxidant behaviour. In this sense, the aim of this work was to scrutinize the antioxidant or pro-oxidant potential of β-carotene and its metabolites, namely trans-β-apo-8′-carotenal and β-ionone. Several parameters were evaluated in this study, viz. their effects on reactive species production, both in human whole blood and neutrophils; their effects on lipid peroxidation, in the absence and presence of peroxynitrite anion (ONOO−) or hydrogen peroxide (H2O2), using a synaptosomal model; and finally, their putative genotoxic effects in the human hepatic HepG2 cell line. In general, depending on the cellular model and conditions tested, β-carotene and its metabolites revealed antioxidant effects to varying degrees without significant pro-oxidant or genotoxic effects.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    50
    References
    8
    Citations
    NaN
    KQI
    []