Tephra Mass Eruption Rate From Ground-Based X-Band and L-Band Microwave Radars During the November 23, 2013, Etna Paroxysm

2019 
The morning of November 23, 2013, a lava fountain formed from the New South-East Crater (NSEC) of Mt. Etna (Italy), one of the most active volcanoes in Europe. The explosive activity was observed from two ground-based radars, the X-band polarimetric scanning and the L-band Doppler fixed-pointing, as well as from a thermal-infrared camera. Taking advantage of the capability of the microwave radars to probe the volcanic plume and extending the volcanic ash radar retrieval (VARR) methodology, we estimate the mass eruption rate (MER) using three main techniques, namely surface-flux approach (SFA), mass continuity-based approach (MCA), and top-plume approach (TPA), as well as provide a quantitative evaluation of their uncertainty. Estimated exit velocities are between 160 and 230 m/s in the paroxysmal phase. The intercomparison between the SFA, MCA, and TPA methods, in terms of retrieved MER, shows a fairly good consistency with values up to $2.4\times 10^{6}$ kg/s. The estimated total erupted mass (TEM) is $3.8\times 10^{9}$ , $3.9\times 10^{9}$ , and $4.7\times 10^{9}$ kg for SFA with L-band, X-band, and thermal-infrared camera, respectively. Estimated TEM is between $1.7\times 10^{9}$ kg and $4.3\times 10^{9}$ for TPA methods and $3.9\times 10^{9}$ kg for the MCA technique. The SFA, MCA, and TPA results for TEM are in fairly good agreement with independent evaluations derived from ground collection of tephra deposit and estimated to be between $1.3\,\,\pm \,\,1.1\times 10^{9}$ and $5.7\times 10^{9}$ kg. This article shows that complementary strategies of ground-based remote sensing systems can provide an accurate real-time monitoring of a volcanic explosive activity.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    48
    References
    8
    Citations
    NaN
    KQI
    []