Performance of a medical imaging system for photons in the 60–140 keV energy range

2001 
Abstract We report the status of the art of a prototype based on a GaAs pixel detector bump-bonded to a dedicated VLSI chip to be possibly used for imaging in the nuclear medicine field. This device, with a 200 μm thick pixel matrix (64×64 square pixels, 170 μm side), has already been tested with very good results for digital mammography applications (mean energy 20 keV). For more energetic photons, as in nuclear medicine, a 600 μm thick detector has been chosen. Using radioactive sources ( 241 Am, 60 keV and 99 m Tc, 140 keV photons) we have measured the performance of our prototype in terms of charge collection and detection efficiency of the detector, discrimination capability of the electronics and imaging properties of the whole system. In particular, we have evaluated the spatial resolution properties measuring the Point Spread Function and the imaging capabilities using a home made thyroid phantom. We present also the comparison between these results and those obtained with a traditional gamma camera and the evaluation, made by both experimental measurements and software simulations, of the geometry related to the use of a collimator.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    1
    References
    8
    Citations
    NaN
    KQI
    []