Strong and complex electron-lattice correlation in optimally doped Bi2Sr2CaCu2O8+delta.

2006 
: We discuss the nature of electron-lattice interaction in optimally doped Bi_{2}Sr_{2}CaCu_{2}O_{8+delta} samples, using the isotope effect (IE) in angle resolved photoemission spectroscopy (ARPES) data. The IE in the ARPES linewidth and the IE in the ARPES dispersion are both quite large, implying a strong electron-lattice correlation. The strength of the electron-lattice interaction is "intermediate," i.e., stronger than the Migdal-Eliashberg regime but weaker than the small polaron regime, requiring a more general picture of the ARPES kink than the commonly used Migdal-Eliashberg picture. The two IEs also imply a complex interaction, due to their strong momentum dependence and their differing sign behaviors. In sum, we propose an intermediate-strength coupling of electrons to localized lattice vibrations via charge density fluctuations.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    1
    References
    17
    Citations
    NaN
    KQI
    []