Internal and external photoprotection in developing leaves of the CAM plant Cotyledon orbiculata

1997 
Leaves of the CAM plant Cotyledon orbiculata produced a dense epidermal wax which decreased the absorption of light, possibly functioning as an external photoprotective mechanism (Robinson et al. 1993). However, developing leaves did not accumulate wax until after 21 d with full wax coating not achieved until at least 35 d. In addition, young leaves had lower rates of electron transport than mature leaves. Leaf development therefore occurs at higher incident PFD than that experienced by the mature leaves, and, for young leaves, can lead to an increase in the proportion of light energy which is excess to requirements and must be dissipated non-photochemically. Changes in the photosynthetic capacity, PSII efficiency, rate of energy dissipation, and the content of chlorophyll (Chi), carotenoids, wax and anthocyanins were followed in developing leaves of C. orbiculata in an attempt to elucidate the relative importance of the various photoprotective mechanisms during leaf ontogeny. The largest pools of xanthophyll cycle pigments (on a Chi basis) were found in the waxless, young leaves and were correlated with greater levels of energy dissipation activity. The importance of xanthophyll cycle-dependent energy dissipation in young C. orbiculata leaves prior to development of a reflective wax covering, and full photosynthetic capacity which for CAM plants includes appreciable nocturnal acid accumulation, is discussed. Also, we consider the possibility that anthocyanin pigments in the upper and lower epidermis may increase reflectivity and act as external photoprotectants.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    37
    References
    77
    Citations
    NaN
    KQI
    []