Mechanism of Fischer–Tropsch Synthesis over Nanosized Catalyst Particles: Approaches and Problems of Ab Initio Calculations

2019 
The main results of calculations of energy parameters performed by ab initio methods (DFT) for steps of the mechanism of Fischer–Tropsch synthesis involving cobalt- and iron-containing catalytic systems which have been published over the last decade and a half are analyzed. Primary attention is paid to the results somehow characterizing a transition from catalyst representation as crystallographically ideal surfaces of metals to the realistic models of nanoparticles both homogeneous crystallochemically and containing surface defects and/or heteroatoms. It is shown that little attention is given to the calculations of iron-containing catalysts compared with cobalt-containing ones and the calculations of chain growth steps compared with steps through formation of single-carbon compounds; the methodological problems of applying DFT to nanoparticles suspended in a liquid medium are highlighted.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    98
    References
    3
    Citations
    NaN
    KQI
    []