Experimental modulation of Interleukin 1 shows its key role in chronic kidney disease progression and anemia.

2021 
Inflammation in chronic kidney disease (CKD) is mostly due to activation of the innate immune system, in which Interleukin-1 (IL-1) is a key player. Anemia of CKD may also be due to erythropoietin (EPO) resistance, clinically associated with inflammation. IL-1 receptor antagonist knockout (RaKO) mice show arthritis and excessive inflammation. Inhibition of IL-1 was shown to be beneficial in many inflammatory conditions, but its role in CKD and anemia is unknown. Here, we report that enhanced inflammation in RaKO mice with CKD provoked both higher degrees of renal insufficiency and anemia in comparison to wild-type CKD, in association with a downregulation of renal hypoxia inducible factor-2 (HIF2) as well as decreased bone marrow EPO-receptor (EPOR) and transferrin receptor (TFR). In contrast, administration of P2D7KK, an anti-IL1b monoclonal antibody, to CKD mice results in a lower grade of systemic inflammation, better renal function and blunted anemia. The latter was associated with upregulation of renal HIF-2α, bone marrow EPO-R and TFR. Altogether, this supports the key role of inflammation, and IL-1 particularly, in CKD progression and anemia. Novel treatments to reduce inflammation through this and other pathways, may improve renal function, attenuate the anemic state or increase the response to exogenous EPO.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    50
    References
    0
    Citations
    NaN
    KQI
    []