High reversion potential of a cell-adapted vaccine candidate against highly pathogenic porcine reproductive and respiratory syndrome
2018
Abstract Modified live vaccine (MLV) based on highly pathogenic porcine reproductive and respiratory syndrome virus (HP-PRRSV) is prone to quick reversion of virulence upon circulating in host animals. The objective of this study was to evaluate the virulence reversion potential of HP-PRRSV MLV and to identify elements within the HP-PRRSV genome contributing to this phenomenon. A blind passage, cell-adaptation strategy was attempted to attenuate a HP-PRRSV strain JX143, which was isolated during the atypical PRRS outbreak in 2006. Two attenuated candidates passage 87 (JXM87) and passage 105 (JXM105) used as MLVs showed the best balance of safety and efficacy in 4 week-old piglets (unpublished data). Two studies were performed during which the candidates were assessed for reversion to virulence through five back passages in susceptible piglets (21 ± 3 days of age). Both study results showed increase in clinical signs, pyrexia and lung lesions as well as decreased average daily weight gain as of passage 3 in susceptible pigs clearly, and it indicated that both candidates regained virulence, irrespective of the passage level. Increase in respective parameters was accompanied by increase in viremia in piglets: JXM87 virus titer increased from Passage 1 (P1) 4.40 Lg TCID 50 /mL to P4 5.75 Lg TCID 50 /mL, and JXM105 virus titer increased from P1 3.78 Lg TCID 50 /mL to P4 6.42 Lg TCID 50 /mL. Next generation sequencing (NGS) was performed on clinical samples (serum, lung tissue) from P4 animals. Sequence analysis comparing P4 materials with their parental strains revealed 10 amino acid mutations in 4 proteins for JXM87 and 14 amino acid mutations in 9 proteins for JXM105, respectively. Interestingly, five amino acid mutations were identical for the two candidates, which were located in nsp1β, GP5a and nsp10 coding regions, suggesting nsp1β, GP5a and nsp10 could contribute to virulence in HP-PRRSV.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
50
References
11
Citations
NaN
KQI