Increased Exposure of Plankton to Arsenic in Contaminated Weakly-Stratified Lakes

2018 
Abstract Arsenic, a priority Superfund contaminant and carcinogen, is a legacy pollutant impacting aquatic ecosystems in urban lakes downwind of the former ASARCO copper smelter in Ruston, WA, now a Superfund site. We examined the mobility of arsenic from contaminated sediments and arsenic bioaccumulation in phytoplankton and zooplankton in lakes with varying mixing regimes. In lakes with strong seasonal thermal stratification, high aqueous arsenic concentrations were limited to anoxic bottom waters that formed during summer stratification, and arsenic concentrations were low in oxic surface waters. However, in weakly-stratified lakes, the entire water column, including the fully oxic surface waters, had elevated concentrations of arsenic (up to 30 μg L − 1 ) during the summer. We found enhanced trophic transfer of arsenic through the base of the aquatic food web in weakly-stratified lakes; plankton in these lakes accumulated up to an order of magnitude more arsenic on multiple sampling days than plankton in stratified lakes with similar levels of contamination. We posit that greater bioaccumulation in weakly-stratified lakes was due to elevated arsenic in oxic waters. Aquatic life primarily inhabits oxic waters and in the oxic water column of weakly-stratified lakes arsenic was speciated as arsenate, which is readily taken up by phytoplankton because of its structural similarities to phosphate. Our study indicates that mobilization of arsenic from lake sediments into overlying oxic water columns in weakly-stratified lakes leads to increased arsenic exposure and uptake at the base of the aquatic food web.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    47
    References
    8
    Citations
    NaN
    KQI
    []