Low-frequency fourier transform infrared spectroscopy of the oxygen-evolving complex in Photosystem II*

2000 
In this communication, we report our progress on the development of low-frequency Fourier transform infrared (FTIR) spectroscopic techniques to study metal-substrate and metal-ligand vibrational modes in the Photosystem II/oxygen-evolving complex (PS II/OEC). This information will provide important structural and mechanistic insight into the OEC. Strong water absorption in the low-frequency region (below 1000 cm−1), a lack of suitable materials, and temperature control problems have limited previous FTIR spectroscopic studies of the OEC to higher frequencies (>1000 cm−1). We have overcome these technical difficulties that have blocked access to the low-frequency region and have developed successive instruments that allow us to move deeper into the low-frequency region (down to 350 cm−1), while increasing both data accumulation efficiency and S/N ratio. We have detected several low-frequency modes in the S2/S1spectrum that are specifically associated with these two states. Our results demonstrate the utility of FTIR techniques in accessing low-frequency modes in Photosystem II and in proteins generally.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    26
    References
    13
    Citations
    NaN
    KQI
    []