Batch Fabrication of High-Quality Infrared Chalcogenide Microsphere Resonators.
2021
Optical microsphere resonators working in the near- and mid-infrared regions are highly required for a variety of applications, such as optical sensors, filters, modulators, and microlasers. Here, a simple and low-cost approach is reported for batch fabrication of high-quality chalcogenide glass (ChG) microsphere resonators by melting high-purity ChG powders in an oil environment. Q factors as high as 1.2 × 106 (7.4 × 105 ) are observed in As2 S3 (As2 Se3 ) microspheres (≈30 µm in diameter) around 1550-nm wavelength. Smaller microspheres with sizes around 10 µm also show excellent resonant responses (Q ≈ 2.5 × 105 ). Based on the mode splitting of an azimuthal mode in a microsphere resonator, eccentricities as low as ≈0.13% (≈0.17%) for As2 S3 (As2 Se3 ) microspheres are measured. Moreover, by coupling ChG microspheres with a biconical As2 S3 fiber taper, Q factors of ≈1.7 × 104 (≈1.6 × 104 ) are obtained in As2 S3 (As2 Se3 ) microspheres in the mid-infrared region (around 4.5 µm). The high-quality ChG microspheres demonstrated here are highly attractive for near- and mid-infrared optics, including optical sensing, optical nonlinearity, cavity quantum electrodynamics, microlasers, nanofocusing, and microscopic imaging.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
51
References
1
Citations
NaN
KQI