AQWA: adaptive query workload aware partitioning of big spatial data

2015 
The unprecedented spread of location-aware devices has resulted in a plethora of location-based services in which huge amounts of spatial data need to be efficiently processed by large-scale computing clusters. Existing cluster-based systems for processing spatial data employ static data-partitioning structures that cannot adapt to data changes, and that are insensitive to the query workload. Hence, these systems are incapable of consistently providing good performance. To close this gap, we present AQWA, an adaptive and query-workload-aware mechanism for partitioning large-scale spatial data. AQWA does not assume prior knowledge of the data distribution or the query workload. Instead, as data is consumed and queries are processed, the data partitions are incrementally updated. With extensive experiments using real spatial data from Twitter, and various workloads of range and k-nearest-neighbor queries, we demonstrate that AQWA can achieve an order of magnitude enhancement in query performance compared to the state-of-the-art systems.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    46
    References
    55
    Citations
    NaN
    KQI
    []