Long‐term manure amendments and chemical fertilizers enhanced soil organic carbon sequestration in a wheat (Triticum aestivum L.)–maize (Zea mays L.) rotation system

2017 
The carbon sequestration potential is affected by cropping system and management practices, but soil organic carbon (SOC) sequestration potential under fertilizations remains unclear in north China. This study examined SOC change, total C input to soil and, via integration of these estimates over years, carbon sequestration efficiency (CSE, the ratio of SOC change over C input) under no fertilization (control), chemical nitrogen fertilizer alone (N) or combined with phosphorus and potassium fertilizers (NP, NK, PK and NPK), or chemical fertilizers combined with low or high (1.5×) manure input (NPKM and 1.5NPKM).; Results: Results showed that, as compared with the initial condition, SOC content increased by 0.03, 0.06, 0.05, 0.09, 0.16, 0.26, 0.47 and 0.68 Mg C ha-1 year-1 under control, N, NK, PK, NP, NPK, NPKM and 1.5NPKM treatments respectively. Correspondingly, the C inputs of wheat and maize were 1.24, 1.34, 1.55, 1.33, 2.72, 2.96, 2.97 and 3.15 Mg ha-1 year-1 respectively. The long-term fertilization-induced CSE showed that about 11% of the gross C input was transformed into SOC pool.; Conclusion: Overall, this study demonstrated that decade-long manure input combined with chemical fertilizers can maintain high crop yield and lead to SOC sequestration in north China. © 2016 Society of Chemical Industry.; © 2016 Society of Chemical Industry.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    41
    References
    9
    Citations
    NaN
    KQI
    []